
J Fluid Me.th (1996). id 319, p p  71 107 
Copyright Q 1996 Cainbridge University Press 

77 

Strongly nonlinear vortex-Tollmien-Schlichting- 
wave interactions in the developing flow through a 

circular pipe 
By A. G. WALTON 

Department of Mathematics, Imperial College of Science, Technology and Medicine, 
180 Queen’s Gate, London SW7 2BZ, UK 

(Received 13 November 1995 and in revised form 14 March 1996) 

Strongly nonlinear vortex-Tollmien-Schlichting-wave interaction equations are 
derived for the case where the undisturbed motion represents the developing flow in a 
circular pipe. The effect upon the equations of moving the wave input position further 
downstream is investigated and the development of the flow is found to be accelerated 
by increasing the size of the wave disturbance. Numerical solutions of the three- 
dimensional interaction equations are presented and indicate that the form of 
interaction considered here appears to promote the three-dimensionality as the flow 
develops downstream. It is shown that one of the interactions considered here can 
develop within an initially two-dimensional Blasius boundary layer. 

1. Introduction 
Over the past few years a number of studies of the vortex-wave interaction (VWI) 

equations have been carried out. The main reason for this is that their main property, 
namely the ability to strongly affect the mean flow in a boundary layer, has obvious 
applications within the area of laminar-turbulent transition. One possibility is for the 
waves to be governed predominantly by inviscid effects, in which case the interaction 
is referred to as a ‘vortex-Rayleigh-wave interaction’. In this paper however, we will 
be concentrating on the situation in which the wave is of viscous-inviscid type, leading 
to a vortex-Tollmien-Schlichting (TS) interaction. Our aim is to modify the existing 
works, which have mainly concentrated on external boundary-layers and channel flows 
(e.g. Hall & Smith 1988, 1991; Smith & Walton 1989; Smith & Blennerhassett 1992) 
to the case of the developing flow through a pipe of circular cross-section. (In fact, the 
analysis of $ 5  concerning starting solutions for the VWI is also relevant for interactions 
in external boundary layers.) The weight of theoretical and numerical evidence (e.g. 
Corcos & Sellars 1959; Gill 1965; Davey & Drazin 1969; Garg & Rouleau 1972) 
suggests very strongly that the fully-developed flow through such a pipe is stable to both 
two-dimensional and three-dimensional infinitesimal disturbances, although exper- 
iments (e.g. Reynolds 1883 ; Wygnanski & Champagne 1973) clearly show instability 
at large Reynolds numbers. Given the ability of the VWI to alter a flow by an O( 1) 
amount, it seems sensible to investigate whether such a process provides a means of 
explaining the experimental findings. Close to the pipe entrance, the flow is likely to 
consist of a uniform core of fluid plus a Blasius boundary layer at the wall; thus the 
natural instability mechanism to consider is that of TS waves. This justifies our decision 
to concentrate on the vortex-TS interaction although, as remarked by Cowley & Wu 
(1994), if this interaction leads to the development of an inflexion point in the flow, the 
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possibility of a vortex-Rayleigh-wave interaction occurring cannot be ruled out. 
Strong vortex-TS interactions are of two main types, outlined in Hall & Smith (1991), 
where they are referred to as the ‘wide vortex’ and ‘small vortex’. In fact, the small 
vortex is also considered in Smith & Walton (1989) where it is called a ‘Type 111’ 
interaction. The scalings and governing equations for both these interactions are 
presented in $2. 

Throughout the paper the cylindrical polar coordinate system (ax, ar, 0) with origin 
at the pipe entrance is used, where a represents the pipe radius. The (x, r ,  0) velocity 
components are written (u,  v, w) (F/a2) where F represents the constant flux of fluid 
through a section of the pipe, the pressure is non-dimensionalized with respect to 
p(F/a2)’, where p is the density of the fluid (assumed incompressible) and the time is 
written in the form (a3/F)  t. We define the global Reynolds number 

R = F/au, (1.1) 
which we assume throughout to be asymptotically large. The three-dimensional 
unsteady Navier-Stokes equations can then be written in the non-dimensional form 

(1.2a) 

a w  aw a w  w a w  vw lap 1 a2w a2w l a w  1 a2w lv r;;;) -+u-+v-+--+ -=--- +- -+-+--+----+-- ,(1.2d) 
at ax ar r a0 r r a 0  R i ax2 ar2 r ar r2i302 r2 

and are subject to the usual no-slip boundary conditions at the wall r = 1, supplemented 
by regularity conditions along the pipe axis r = 0. 

The structure of the remainder of the paper is as follows. Section 2 concerns the 
derivation of the ‘wide vortex’ interaction equations. We supply a little more detail 
than has been presented in previous papers on the subject in an attempt to provide the 
reader with an understanding of the processes involved, in particular how such a large 
effect can be generated owing to the difference in lengthscales between the mean flow 
and the three-dimensional TS wave. In $ 3 the interaction equations are formulated for 
the particular case of the developing flow through a circular pipe. It is found that there 
is a crucial distance downstream of the entrance at which the VWI is influenced by the 
effects of curvature. Further downstream at a distance of O(R) from the entrance, the 
lengthscales of the mean flow and wave become comparable and viscous and inertial 
effects become equally important across the entire pipe cross-section. In $4 we 
concentrate on the ‘ small vortex’ interaction in which only a sublayer of the boundary 
layer is affected significantly by the interaction. This interaction arises from a larger 
input disturbance than the wide vortex, and as a consequence the development of the 
flow is accelerated, with the lengthscales of the mean flow and wave coinciding before 
the O(R) distance at which inertial and viscous effects fill the pipe. In this situation the 
VWI develops into a form of triple-deck interaction. A numerical scheme is developed 
to solve the resulting interaction equations and numerical results are presented. Section 
5 concerns the question of whether the wide vortex interaction can be initiated from 
realistic starting conditions. Clearly if this is not the case, the usefulness of the 
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interaction is rather limited. Here we consider the case where a three-dimensional TS 
wave is introduced into a two-dimensional Blasius boundary-layer at various positions 
downstream of the entrance and in each case deduce the initial development of the 
interaction. Finally, in $6 conclusions are drawn and areas of further research 
proposed. 

2. Derivation of the interaction equations 
In Hall & Smith (1991), the scalings were given for the so-called wide vortex- and 

small vortex-TS interactions for the case of an external boundary-layer flow. The aim 
of the present work is to demonstrate how the form of the two different vortex-wave 
interactions changes with distance from the pipe entrance. At first the interaction 
proceeds in an analogous fashion to the external case, then curvature effects come into 
play and eventually the wave and mean flow lengthscales become comparable. The 
distances downstream at which these alterations occur depend on the input disturbance 
size. Not surprisingly, the larger the disturbance the further upstream these adjustments 
take place. We start by considering the wide vortex-TS interaction. Readers familiar 
with the scalings for this interaction are directed to $ 3 were the application to internal 
flows is discussed. In this section, we present a thorough derivation of the scalings and 
governing equations, going into more detail than is found in Hall & Smith (1991). Once 
the scalings in the various regions have been established for this interaction, it is 
straightforward to generalize these to the small vortex-TS interaction which we discuss 
later. For the following discussion concerning the behaviour near the entrance of the 
pipe it is convenient to define a local Reynolds number 

Re = R i ,  (2.1) 

where i denotes distance along the pipe, with L^ = 0 at the pipe entrance. 
In the wide vortex-TS interaction, the aim is to alter the streamwise mean flow by 

an O( 1) amount throughout the entire boundary layer which has the classical thickness 
i. The standard three-dimensional triple-deck framework is used to describe the 

effect of the TS wave on the mean flow. Thus, in addition to the boundary layer or main 
deck, we have a sublayer where viscous and inertial effects are equally important of 
O(Re-”’ L^) thickness (the lower deck) and an outer region of linearized potential flow 
with U(Re-3J8 L^) thickness (the upper deck). The wave dependence is expressed in the 
form 

where X = Resix k ’ x ,  T = Re’” i - ’ t  are the short streamwise lengthscale and timescale 
associated with the wave and the azimuthal lengthscale is of U(Re-”’ L). The scalings 
quoted here can be found in Smith (19794 and many subsequent high-Reynolds- 
number studies involving TS waves. A key idea is that the wave remains neutral 
throughout the interaction so that the wavenumber r and frequency L2 are both real 
quantities and are allowed to vary on the lengthscales and timescales associated with 
the mean flow. We now explain how to deduce the rest of the scalings involved in the 
wide vortex-TS interaction. Our aim is to determine the size of TS disturbance 
necessary to provoke an U( 1) streamwise flow within the boundary layer. This flow is 
required to develop over the same lengthscale as that associated with the boundary 
layer, namely U(L) .  We suppose the unknown flow to be three-dimensional, a 
consequence of which is that the c?u/c?x and c ? w / ? H  terms in the continuity equation 
( 1 . 2 ~ )  must be comparable in size. Assuming that there is only one lengthscale in the 

E = exp (iaX- i n  T ) ,  (2.2) 
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0-direction, namely the O(Re-3/8 ,f) scale associated with the three-dimensional TS 
wave, and balancing the aforementioned terms in the continuity equation, we see that 
the required azimuthal mean flow is of O(Re-3'S). In view of the smallness of this 
quantity it might be suspected that only a tiny wave disturbance is necessary to 
generate this flow, and this proves to be the case. This is the basic principle underlying 
this and other vortex-wave interactions. In order to see how this azimuthal flow is 
induced, we turn to the lower deck of the triple-deck structure, where the normal 
variable y - Re-'/' 2, and the waves are driven by the unknown shear flow (equations 
2.11(u-c) below). In turn, the waves drive the mean-flow correction via an 
inertial-viscous balance (see equations (2.14a-c)). If 6 denotes the size of the azimuthal 
component of the wave (with 6 to be determined), then the size of the azimuthal mean 
flow component w, is deduced from the balance between (w aw/aB)wav, and 
Re-' L  ̂a2wm/ayz in (1.2 d). This gives : 

Re3i8 i-' S2 - (Re-' i) (Re-'" L^)-2w, w, = O(Re'" 6'). (2.3) 

We will see below (equation (2.13 c)) that the azimuthal wave velocity decays like 1/ Y 
as Y-t 00, where Y represents the scaled lower deck coordinate, leading to logarithmic 
growth of w,. Thus upon reaching the matching region between the lower deck and the 
boundary layer (where Y is of O(Relig)) the azimuthal mean flow has grown to 
O(Re118 62 In Re'"). Setting this quantity equal to the desired magnitude of O(Re-3/8), 
we have 

implying a wave amplitude 6 of magnitude 

&2 In - Re-3/8, 

Thus, in particular 

with wzo, wll of 0(1) and C.C. denoting complex conjugate. Now that 6 has been 
determined, it is a straightforward matter to determine the rest of the scalings involved 
in the interaction. The appropriate multi-scalings in x and t are: 

where in each case the first term describes the 'fast' wave response and the second 
represents the scale associated with the induced mean flow. As explained above, the 
azimuthal scaling is 

and in view of the form of 6 in (2.4) we define the large parameter 

M = (In Re118)1iz. (2.7) 

Motivated by the order of magnitude arguments discussed above we now set out the 
flow expansions in the three decks and then derive the governing equations for the wide 
vortex-TS interaction near the pipe entrance. 
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(i) Lower deck (r = 1 - i Y): 
Re-1/4 Re-318 

(u,,E+c.c.)+ ...+--- (u , ,+u, ,E2+~.~.)+ ..., (2.8a) u = Re-”’hY+ ... +- 
M 2  M 

Re-1/2 Re-5/8 
(v,, E+ C.C.) -___ (?& + ?I2, E 2  + C.C.) + . . . , = -- 

M M 2  (2.8b)  

Re-1/4 Re-3/8 

w=- (w,,E+c.c.)+- (w2, + w,, E 2  + c.c.) + .. ., (2.8 c) M M 2  
Re-3/8 

p=-;u:+ ...+- (pll E + c.c.) + . . . . M 

(ii) Main deck ( r  = 1 - Re-li2 i F) : 

u =  u,+ ...+--- M 
Re-3/8 

v=- ( i d , ,  U,, E+ c.c.) - V, + . . . , M 
Re-3/s 

w = W, + - (w, E+ C.C.) + . . . , M 
Re-3/8 

p = -;u,z+ ... +- (pI1 E+ c.c.) + . . . . M 

(iii) Upper deck (r = 1 - i,$ : 

M 
Re-3/8 

u = u,+ ... +-(= uEfc.c.)+ ... , 

(2 .8d)  

( 2 . 9 ~ )  

(2.9b) 

(2.9 c) 

(2 .9d)  

(2.104 

Re-3/8 
2, = -Re-318 u;(z)y’+ . . . + ~ (a?+ C.C.) + ’ . . , (2.1 0 b) M 

Re-3/8 

w = -  (EE+c.c.)+ ..., (2.10c) M 
Re-318 

p = -;u,z+ ... +- (p’E+c.c.)+ ... . M (2.10d) 

Substituting these expansions into the Navier-Stokes equations we obtain the 
governing interaction equations. We start with the lower deck where the TS wave is 
driven by the unknown induced shear flow hY where h = A(& R, Q. Substitution of (2.8) 
into (1.2) leads to the following wave balances: 

(2.11 a) iaull+-+- av,, 3% = 0, 

@ = 0, -iQw,,+iahYw,, = --+- dP11 

ay ae 
ah 
ae a y2 

a2u11 (2.11b) -iQu,, + iah Yu,, +AD, ,  +-- Yw,, = - iap,, +-, 

(2.1 1 c )  ay ae c?Y2 ’ 
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subject to the no-slip boundary conditions 

u,, = u,, = w,, = 0 on Y = 0, (2.11d) 

with matching conditions to the main deck 

ul1-fhAll, wl1+0 as Y-2 00, (2.1 1 e, f 
where A , ,  is the wave contribution to the boundary-layer displacement. In conventional 
linear stability analyses h is constant; however, even with h dependent on 8, it is 
possible to reduce the system (2.11) to an equation describing the evolution of the wave 
pressure p,, (for details see Smith 1979b). The equation takes the form 

I 
and Ai denotes the Airy function. It can be seen that the mean flow affects the wave 
in a nonlinear fashion via the occurrence of both h and 5 in this equation. If there is 
no interaction and h is a constant, this equation reduces to the familiar linear stability 
eigenrelation for TS waves. To confirm the statements made above concerning the 
growth of the azimuthal mean flow it is necessary to determine the asymptotic 
behaviour of the wave components in the lower deck. From (2.11) we deduce that as 
Y+m: 

(2.13a) 

(2.13b) 

(2.13~) 

Once again from substitution of the lower deck expansions (2.8) into (1.2), the induced 
mean flow is found to satisfy 

-+-= av20 aw2o 0, 
ay ae 

au;, au;, 
ah ae [ ay ae ] ;;;, 

] ;?, 
hv,,+w,, Y-+ u,,-+wll-+C.C. = __ 

aw;, aw;, [ ay ae iau;F, w,,+u,,-+w,,--+c.c. = ~ 

(2.14~~) 

(2.14b) 

(2.14~) 

with * denoting complex conjugate. Using (2.13) and (2.14) it is possible to deduce the 
asymptotic form of the mean terms as Y+ m. We find u,, cc Y31n Y, cc Yln Y and 

w , ~  --qlnY as Y+m, 
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where 

(2.15) 

This confirms the claims made just below (2.3). Note that it is only the mean term that 
undergoes this logarithmic growth; the analogous equations to (2.14b, c) for u,,, w,, 
contain the additional terms iah Yu,,, iah Yw,,, respectively : these serve to inhibit the 
growth of the higher harmonics. At first sight, another possibility appears to be for w,, 
to grow like Y as Y-t  co from (2.14~). This leads to an overspecified problem in the 
main deck, however, and so need not be considered further. 

Next we turn to the equations in the man deck or boundary layer. We have 
anticipated the expressions for the wave in the expansions (2.9) for u and v :  these can 
be verified by substitution of (2.9) into (1.2). This process also reveals that the mean 
part of the flow satisfies the unsteady three-dimensional boundary-layer equations 

(2.16~)  

(2.16b) 

(2.16~) 

with matching conditions to the lower deck : 

u,= y, = O ,  w,,=-q on F=O, (2.16d, e) 

h =Zu,,/aY on Y =  0. (2.16f) 
As in the conventional triple-deck TS framework, the upper deck is a region of 
linearized potential flow and the appropriate matching conditions from the main deck 
are : 

U,+U,(x), W,+O as Y - t c o ,  (2.17) 
where U,(x) represents the external slip velocity arising from the outer inviscid flow. In 
order to close the system of governing equations we require a relation associating the 
wave pressure p I 1  with the wave contribution to the boundary-layer displacement Al l .  
This is found by substituting the upper-deck expansions (2.10) into (1.2), and leads to 
the pressure equation 

(2.18) 

subject to the matching conditions 

ap/a? = -“,A,,, p = pI1 on 7 = 0, 

to ensure, respectively, continuity of normal velocity and pressure. The solution to 
(2.18) is also required to decay in the far field. 

Thus the governing system for the wide vortex TS interaction reduces to solving 
(2.16) for the mean flow in the boundary layer with q given by (2.15) and pit by (2.12). 
In general, the governing equations require a numerical solution and their strongly 
nonlinear nature renders such a task non-trivial. To the author’s knowledge there has 
only been one attempt at a numerical solution of the full governing equations, namely 
that of Hall & Smith (199 1). In that paper, the starting conditions imposed assume that 
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the flow is already three-dimensional, with the spanwise component required to satisfy 
a compatibility condition. For a particular three-dimensional input, Hall & Smith’s 
calculations terminated in an apparent finite-distance singularity, although it is 
possible that the singularity is purely numerical. Later, in $5, we investigate the 
development of the interaction from an initially two-dimensional Blasius boundary 
layer. We turn now to the question of how the interaction equations are modified 
further downstream of the pipe entrance. 

3. The effect of curvature on the wide vortex-TS interaction 
The system of interaction equations was derived in $2 for a location near the 

entrance to the pipe. In this situation the equations are precisely the same as if the flow 
were unconfined. We might expect that as we move down the pipe, i.e. increase i, the 
effects of confinement and curvature must eventually play a significant role in the 
interaction. The explicit ,f-dependence in the scalings (2.5)-(2.10) is deceptive because 
in addition Re is dependent on t. Thus, in what follows, we work in terms of the global 
Reynolds number R (= R e / i ) .  For convenience we define a scaled downstream 
distance 

The situation envisaged is one in which the flow enters the pipe at = 0 with a uniform 
velocity profile u = 1. In order that a constant flux of fluid is maintained, the flow at 
the centre of the pipe must accelerate in view of the retarding effect of viscosity at the 
wall. Since the boundary layer is of thickness 0(eL1l2) in terms of the new parameters, 
there is a correction to the uniform core flow of the same magnitude. Thus the core flow 
expands in the form 

with a similar expansion for the mean contribution to the pressure. We will now rewrite 
the scalings (2.5j(2.10) in terms of the new parameters e and L, rather than Re and 
i. The multi-scalings have the form 

L = e 3 i  where t: = R-lI5 < 1. (3.1) 

Ue(Z) = 1 + €L1’2 Ue1(X) + . . . , (3.2) 

(3.3c, d )  

and the expansions in the three asymptotic regions are as follows: 

(i) lower deck (r  = 1 -2 L3/’ Y ) :  
€2 L-114 €3 L-318 

(u,,E+c.c.)+ ... +- ( ~ 4 ~ ~  + u,, E2 + c.c.) + . . ., u = €L-1’8hY+...+- 
M 2  M 

€4 L-112 € 5 ~ - 5 1 a  

M M 2  fJ = -___ (v,,E+c.c.)---- ( V ~ ~ + V ~ ~ E ~ + C . C . ) +  ..., 

€2 L--114 € 3  L-318 

M M 2  
W=- (Wll E+ C.C.) + - (~ , , fw, ,E~+c.c . )+  ..., 

(3.4a) 

(3.4b) 

(3.44 

€3 ~ - 3 1 8  

p = €L1’2P(Z)+ ...+--- ( P l l  E+c.c.) + . . . ; M (3.4d) 
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(ii) main deck (Y = 1 --eLlia Y): 

i u = U”+ ...+-( a , , -F+c .c .  + ..., E2 L-114 a U, 
M aY 

e3 L-318 

M v=- (iaA,, U,, E+c.c.)- E4 L-112 yo+. . .  , 

( 3 . 5 4  

(3.5b) 

(3.5 c) 

(3.5d) 

e3 L-3/8 

A4 v=- (EE+ C.C.) + . . . , 
t.3 L-3/11 

A4 w=- (EE+C.C.)+ ... , 

(3.6b) 

( 3 . 6 ~ )  

(3 .6d)  

Since we have not altered the scalings in any way, the governing equations remain as 
before except for the removal of the term Ue U ~ ( X )  from the right-hand side of (2.16b) 
and the replacement of U, by unity in (2.17). These equations remain valid provided 

< R3l5, and we shall henceforth refer to this as region I of the pipe. The first effects 
of curvature appear at distances of O(R‘9, when L is O(1). This result was first 
deduced by Smith & Bodonyi (1980) in their weakly nonlinear study of the stability 
of developing pipe flow to three-dimensional TS waves. At such distances, the upper 
deck extends across the entire cross-section of the pipe and the azimuthal scaling 
increases to O( 1). Thus, the effects of confinement and curvature impress themselves 
upon the flow. In order to investigate the development of this interaction further 
downstream ( L  3 O(1)) we must seek new scalings with respect to L. First, when 
L = O(l), the governing interaction equations are 

au, avo aw, 
C?X u ao -+-+- = 0, (3.7a) 

subject to 

(3.7b) 

(3.7c) 

(3 .7d)  
(3.7e) 

(3 .7f)  
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with pI1 found from the solution of 

The reason for underlining certain terms will be made clear later. We see that the only 
alteration to the governing equations which were valid for L < O(1) is in the upper 
deck (compare (2.18) with (3.7h)). The region of validity of (3.7), i.e. L - O(1), will be 
referred to as region IIa. A clue to the appropriate scalings for L > O(1) arises from 
the linearized TS stability analysis performed by Smith & Bodonyi (1980), part of 
which we repeat here. Provided the streamwise flow U, remains O( 1)' the balancing of 
terms in (3.7b) indicates that the unknown skin-friction h scales with x ~ / ~ .  For 
example, if the mean flow within the boundary layer is the classical Blasius flow at 
leading order, then U, =YB( T/Z1/') and h = i/x1/' where i N 0.33205. With this value 
for h and setting pll K cosN8, (3.7g, h) combine to yield the linear stability 
eigenrelation 

where IN is the Nth-order modified Bessel function of the first kind. For neutral 
stability (i.e. a real), the eigenrelation becomes : 

I' (a) " -  

I d a )  
N 2  + a' N 1 .OOO 65a2l3 -&L- h3l3 X5I6 (3.9) 

Using the asymptotic form Ik(a) / IN(a)  - N/a as a --f. 0 we see that 

a K x5J2 as x-tco. (3.10) 

N x2. In addition, for 6 in (2.12) to remain O( l), the frequency 52 must scale as 
These results suggest the streamwise and temporal multi-scalings 

(3.1 1) 

for the region 0(1) < L < O(eP), which we shall henceforth refer to as region 116. We 
note that when L - O ( c 2 ) ,  i.e. an O(R) distance downstream, the wave and mean flow 
scalings become comparable. We investigate this further presently. In view of the 
property Iir(a)/IN(a)+ 1 as a+ co, the eigenrelation (3.9) implies that a cc xS1* as 
X-0, in agreement with the scaling in region I. Thus, region IIa can be regarded as 
a thin adjustment region in which the flow sheds its external properties and develops 
internal characteristics. The azimuthal scaling in region IIb is O(1), i.e. 

(3.12) 

and the rest of the scalings are chosen so that the resulting governing equations are 
changed as little as possible from those governing the interaction in region I, i.e. 
equations (3.7). After some trial and error the appropriate expansions for region IIb 
can be shown to be: 
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(i) lower deck ( r  = 1 - c2L Y )  : 
2 L  € 3  L"2 
M M2 

u = €L1/Zh Y+- (Ul1 E+c.c.) +-(u2, + uz2 E 2  +c.c.) + 

u = -___ (Ul1 E+c.c.)--(v2,+v2, E2+C.C.) + . . . , 

w=- (Wl1 E+c.c.) +-(w,,+ )'c22 E2SC.C.) + .. . , 

p =cL'/2F(x)+ ...+- ( p l l  E+c.c.) + . . . ; 

e4 L-112 

M M 2  

€2 L-312 € 3  L-I 
M M 

t3 L-712 
M 

(ii) main deck ( r  = 1 - eL1I2 F) : 

€3 ~ - 7 / 2  

p = € L l V ( X ) +  ...+- (pll E+ C.C.) + . . . ; M 

(iii) upper deck (Y = O(1)): 
€3 L-712 

M u = 1 + €L1I2 Uel(Z) + . . . + ___ (EE+c.c.)+ 

v = -  (EE+ C.C.) + . . . , 

w=- (GE+c.c.)+ ...) 

€3 L-712 
l i2  P(x) + . , . + ___ (p'E+c.c.)+ ... , M p = e L  

where the large parameter M is now given by 

e3 L-1 
M 

€ 3  L-1 
M 

M = (-In (L1/2  e))lI2. 

... 

87 

(3.13 a) 

(3.13 b) 

(3 .13~)  

(3.13d) 

(3.14a) 

(3.14 b) 

(3.144 

(3.14d) 

(3.15 a) 

(3.1 5 b) 

(3.15 c) 

(3.154 

(3.16) 

Note that the above scalings coincide with those in Region I (i.e. (3.3E(3.6)) when L is 
O(1). It should be stressed that the proposed form of evolution of the flow from region 
I to region I1 is not the only possibility. For instance for certain starting conditions the 
flow in region I may terminate in a finite distance singularity (Hall & Smith 1991). 
Substitution of the scalings (3.1 lt(3.16) into the Navier-Stokes equations (1.2) and 
working as before, we find that the governing equations are as in region IIa, i.e. (3.7), 
but without the underlined terms. Such terms might be expected to lose their 
importance as we move downstream since the effective wavenumber is decreasing, as 
may be inferred from (3.10), for example. 
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Eventually, when L - O ( F - ~ ) ,  the wave and vortex lengthscales and timescales 
become comparable, both of O(R). At such distances all three layers extend across the 
whole of the pipe with the flow predominantly in the streamwise direction. Setting 
L = O(C’) in the above scalings the scalings in the ‘fully-developed’ region I11 are 

with the flow expanding in the form 

u = uo+ ..., 
u = R-’ V,+ ..., 
w = R-’ W,+ ..., 
p = P(X)+R-2Po+... 

(3.17) 

(3.1 8 a) 
(3.18 b) 
(3.1 8 c)  
(3.18d) 

with (Uo, V,, W,, Po) all dependent on (x, r,  e, t>. Substitution of the above expansions 
into the N-S equations yields 

(3.19~) 

(3.19~) 

aw, aw, aw, w,aw, v, w, ---+u,--+v,-+--+--- a t  ax ar r a0 r 

lap, azw, law, 1 a 2  w, w 2av0 
- - --= + __ + - __ + - - - -2 + - -- . 

r a6 ar2 r ar r2 a02 r2 r2 80 
(3.19 d )  - - 

The relevant boundary conditions are 

U , =  V,= W,=O on r =  1, 

to ensure no slip, with regularity conditions along the pipe axis r = 0. In addition the 
pressure term P i s  determined by the condition of constant mass flux through the pipe, 
or from maintaining a constant pressure gradient as is perhaps more often the case in 
experiments. We see from (3.19) that the flow is governed by almost the full 
Navier-Stokes equations with the exception of the a2/ax2 terms which have lost their 
importance owing to the long lengthscale over which the flow is now developing. One 
solution of this system is the unidirectional parabolic profile U, = 1 - r2,  P’(x) constant 
(Hagen-Poiseuille flow or HPF). Several authors (see Crabtree, Kuchemann & 
Sowerby 1963 and references therein) have examined the development from a uniform 
entry flow to the Poiseuille profile, and matched the two solutions together numerically, 
but there seems no a priori reason why the parabolic profile should be attained 
downstream and in experiments this is not usually the case unless great care is taken 
to control the disturbance environment. We note that (3.19) is parabolic in X ,  so that 
no downstream conditions can be imposed here. Computations of (3.19) from uniform 
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I I1 a I1 b I1 I 

FIGURE 1. The development of the structure of (a) tbe wide vortex, (b) the small vortex, as the 
position of wave input L is increased. 

entry conditions with a/ax = 0 and P’(.x) fixed were carried out in Walton (1991). In 
this situation the HPF profile is reached rapidly in time. It would be interesting to see 
if this is also the case for the marching version of (3.19) and for cases in which the mass 
flux rather than the pressure gradient is fixed. 

To summarize, we have shown how the wide vortex interaction equations alter as 
the location L of wave input is moved downstream; the scalings derived enable L to 
be scaled out of the equations in each of the regions I, IIa and IIb. A diagrammatical 
summary of the different stages of development is given in figure 1 (a). We return to the 
wide vortex in $ 5 ,  where the initial linear development of the interaction in the regions 
I, I1 a and I1 b from a two-dimensional boundary layer is considered. In the next section 
we derive the scalings and governing equations for the small vortex. 

4. The small vortex-TS interaction 
4.1. Scalings and governing equations 

We will now attempt to motivate the scalings for the so-called small vortex-TS 
interaction given in Hall & Smith (1991), Smith & Walton (1989). The aim of this 
interaction is to alter the flow completely in a sublayer of the boundary layer of relative 
thickness O(e/h) where O(e) < h < O(1). We will follow Hall & Smith’s terminology 
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and refer to this sublayer as the 'buffer region', although in other works the term 
'diffusion layer' is often used. The case of h - O(e) is the wide vortex discussed in $92 
and 3, while if h - 0(1), the nonlinear effects are confined to the lower deck (i.e. we 
have a conventional triple-deck problem). It is useful to regard h as a measure of the 
size of the TS disturbance. For definiteness, we suppose that the flow in the remainder 
of the boundary layer or main deck is of the Blasius form. Since this flow is 
proportional to the boundary-layer coordinate close to the wall, the undisturbed 
streamwise flow will be of order t./h within the buffer region. For a strong interaction 
we require the induced flow to be of the same magnitude. In view of the viscous-inertial 
balance operating within this layer, the flow must vary over a lengthscale x deduced 
from equating the sizes of the terms u a u p x  and R-l a2u/i3y2 in (1.2 b) where u - e/h 
and y - (e/h)eL'/' with L defined as in 93. This gives x = h-3 LX, say, with 2 of O(1). 
Thus, the induced flow now varies over a shorter lengthscale than the O ( E - ~  L) scale 
associated with the Blasius flow. As expected, when h - O(e), the two lengthscales 
become comparable. These order-of-magnitude arguments suggest that the appropriate 
streamwise multi-scaling for the small vortex is 

(cf. (3.3)) with the wave lengthscale remaining as in the wide vortex case. If, in addition, 
the induced flow is time-dependent, the appropriate temporal multi-scaling has the 
form 

The scaling for the azimuthal variable 0 is as previously, namely 

while the large parameter M is now dependent on h rather than e and takes the form 

A4 = (-In (hL-118))1/2, (4.4) 
(cf. 3 . 3 4 .  All these scaling reduce to their wide vortex counterparts as h+ O(e). It is 
a straightforward matter now to generalize the wide vortex expansions of region I to 
the small vortex case. We omit the details of the expansions in the four flow regions 
but remark that the relevant scalings with respect to the Reynolds number are now 
those of the triple-deck for pipe entry flow (Smith & Bodonyi 1980). This means that 
the governing equations for the small vortex can be derived from either the triple-deck 
equations or the full Navier-Stokes equations, in contrast to the wide vortex-TS 
interaction. Proceeding as in 93, we find that the governing equations for the mean flow 
within the buffer region are 

(4.5 a) 

(4.5b) 

(4.54 
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with 

U, = V, = 0, W, = -4  on F =  0, U, - ~ x ~ / ~ ( F + A , , ) ,  W,+O as F+ co, 
(4.5d) 

(4.Se) 

It is evident that, apart from notational changes, the only alteration from the wide 
vortex case is in the outer boundary condition on U, in (4.54. Intuitively, it may seem 
surprising that increasing the disturbance size from O(e) to O(h) leads to a narrower 
region in which the flow is modified. However, we can see from the order of magnitude 
arguments above that the flow in the thinner layer develops over a shorter lengthscale, 
and therefore a larger disturbance is required to accelerate the development. Further 
downstream, for L of O( l), i.e. ,f - O(eP3), a new region is entered (cf. region IIa for 
the wide vortex) where the effects of curvature become important. As in the wide vortex 
case, the only alteration to the governing equations is that (4.Sg) is replaced by 

We can generalize the arguments of 9 3 concerning the further downstream development 
for > O ( S - ~ )  to the small vortex case. If the flow in the buffer region remains of a 
Blasius nature at leading order, then the linear neutral stability eigenrelation (3.9) 
(which is still valid for the small vortex case) yields a K F 5 I 2 ,  since h cc F ’ I 2 .  Arguing 
as before, the multi-scalings for the downstream region I Ib  where O(1) < L < O(h-2), 
can then be set out as follows: 

The governing equations in the buffer layer remain as in (4.5) and (4.6) but as for the 
wide vortex, the terms underlined in (4.5e,f) and (4.6) are no longer present. We note 
that it is possible for the small vortex to develop in a different way to that anticipated 
here : for example, the mean flow in the buffer region may acquire a similarity solution 
(Walton & Smith 1992). To the author’s knowledge, no marching computations of the 
small vortex-TS system have yet been attempted, so the likelihood of achieving the 
similarity solution downstream is unknown. In any case, for a primarily two- 
dimensional starting condition the development suggested here would seem more 
likely. The initial linear development from such a starting condition is investigated in 
§ S  for the wide vortex case. 
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As for the wide vortex, the vortex and wave lengthscales eventually become 
comparable as L increases. However, with the enhanced disturbance size this occurs 
closer to the entrance than the O(R) distance associated with the development of the 
Blasius boundary layer, specifically when L - O(IZ-~) or ,f - O ( E - ~ ~ - ~ ) .  At this 
streamwise location, the buffer region and lower deck merge together and the 
parameter M decreases to O( 1). Thus, the flow acquires a three-tier structure. With the 
wave and vortex lengthscales comparable, the multi-scalings in region I11 are 

The flow expansions can be deduced directly from the scalings of region I Ib  and take 
the form: 

(i) lower deck (Y = 1 - (e/h)2 F) : 
u = &‘U+ ..., 
v = -c3 h2 V+ ... , 
w = ch4 W+ ..., 
p = sh-lP(x)+ ... +s2h8 P+ ...; 

u = U,(y/X1’2)+€hh-- lAU~+. . . ,  

W = €2h3W,+ ... , 

(ii) main deck (Y = 1 - (s /h)  F): 

v = h 3 ( a A / X )  U,  + . . . , 

p = eh-lP(X)+ ...+ s2h8P+ ...; 

(4.9a) 

(4.9 b) 

(4.9 c) 

(4.9d) 

(4.1 Oa) 

(4.10b) 

(4.10~) 

(4.10d) 

(iii) upper deck (Y of O(1)): 
U = 1 + sh-l Uel(X) + . . . + €2 h8 u+ . . ., 
V = 2 h 3 8 +  ...) 
w = e2h3W=+ ..., 
p = €h-l F ( X )  + . . . + s2h*p=+. . . . 

(4 .11~)  

(4.1 1 b) 
(4.1 1 c) 

(4.1 1 d )  

Substitution into the Navier-Stokes equations (1.2) reveals the flow to be governed by 
the interactive boundary-layer equations 

subject to 

aw aw aw aw ap a2w -+u~+v--,+w--=--= +- at“ ax ay a8 ae aF2’ 

(4.12a) 

(4.12 b) 

(4.12 c) 
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with the pressure P linked to the displacement A via the solution of the system 

a 2  i d  l a 2  = A+--+--- .)p = 0, p =  P, ap=IaY = -2'AA/aP on r = 1. (4.12e) 
ar2 r2r r228 

Finite time and distance singularity structures have been proposed for similar three- 
dimensional systems by Hoyle & Smith (1994). F. T. Smith (personal communication) 
has expressed the view that with regard to (4.12), a singularity may arise in the 
azimuthal direction, given the form of the pressure-displacement relation (4.12 e). 
Certainly, the development of such singularities in the system could be of relevance to 
pipe-flow transition ; we consider the numerical solution of this triple-deck problem in 
the next subsection. A summary of the various stages of development of the small 
vortex interaction is presented in figure 1 (b). 

4.2. The numerical solution of the triple-deck problem 
4.2.1. The numerical scheme 

In order to investigate how the interaction evolves downstream it is necessary to 
solve (4.12) numerically. We restrict ourselves here to the steady case, mainly because 
of the expense and complexity of computing the time-dependent flow. In order to 
capture the periodicity of the motion, the velocity components and the pressure are 
written in Fourier series form. For example, the streamwise velocity component is 
written 

u = u,,(z, F) + C un(i, T)eine+c.c. (4.13) 

The choice of truncation number N is discussed later. These expansions are substituted 
into (4.12), yielding 2N+ 1 nonlinear differential equations (first order in 2, second 
order in ?) for each of the unknowns U,, Wn and their complex conjugates. In 
particular the azimuthal components Wn satisfy equations of the form 

N 

71=1 

(4.14) 

for n = 1, . . ., N,  where * denotes complex conjugate. The main difference between this 
equation and that satisfied by Un is in the appearance of the pressure Pn in the former, 
which is linked to U ,  via the relation 

a2 u, 
a 2 2  

nPn = --(i, a), (4.15) 

stemming from the solution of (4.12e). 
The bulk of the computation consists of solving the momentum and continuity 

equations using a finite-difference scheme of second-order accuracy in both .f and T. 
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Derivatives with respect to 
while 2-derivatives are written in the form 

are represented by standard central difference formulae, 

(4.16) 

with the superscript denoting x-location. For more details see Fletcher (199 1). In order 
to implement this scheme a one-level algorithm is necessary to commence the 
downstream march, i.e. when m = 1. Thus, at the beginning of the computation we 
employ a first-order accurate method in 2, obtaining overall second-order accuracy by 
means of Richardson extrapolation. This method is used for the first two x-steps of the 
march. An additional complication arises from the pressure-velocity relation (4.15). 
For the first two steps the pressure is calculated using the central-difference 
representation : 

npzf' = - ( U m f 2  n, m - 2UF,+A + UF, ,)/(AX)', (4.17) 

in which UF,z  (n = 1, . . ., N )  are unknown at step rn + 1. To overcome this problem, 
guesses are made for these quantities enabling W, to be calculated from the discretized 
version of (4.14). U;+' is then calculated from the 2-momentum equation, leading to 
new estimates for UF,:. The process is repeated until convergence is obtained. 
Typically, less than 10 iterations were required before successive iterates differed by less 
than lo-'. 

If it were necessary to perform this iteration at each downstream location, the 
computation would be extremely expensive. Once two steps have been computed, 
however, it is possible to replace (4.17) by the asymmetric second-order formula 

(4.18) 

in which the right-hand side is known once U;+' is computed from the 2-momentum 
equation. From this stage onwards it is possible to use the second-order accurate 
marching scheme to compute the downstream evolution without recourse to any 
further iteration. This speeds up the computation considerably. At each 2-step a block 
tridiagonal system of equations is obtained, and these are solved efficiently using the 
Thomas algorithm. 

4.2.2. Starting conditions 
Computations were performed for both the interactive and non-interactive (P = 0 in 

(4.12~)) versions of (4.12). In order to obtain suitable starting conditions for both 
cases, we adopt the following approach. Writing 

u = T+ €21/3 u"($ cos 6,  

I/ = €2-1/3?7(7) cos 6, 

W = ~2-'/~@(7) sin 6, 

(4.19~) 

(4.19 b) 

(4.19 c) 

P = G ~ - ~ / ~ ~ " c o s  6, (4.19d) 

where T = F/2lI3, c < 1 and substituting into (4.12), we obtain the equations 

;u"-;qg+C/+$ = 0, (4.20~) 

$ $ - ; q 2 $ + i j  = c", - i r @ - A  3r 2 6 '  = 22-1/32+@)" 9 > (4.20 b, c) 
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FIGURE 2. (a) The streamwise velocity component a(?), (b) the normal velocity component 6(~), (c) the 
azimuthal velocity component Kj(r), calculated from the numerical solution of the non-interactive 
version of (4.20). 

- 
with ii = ij = = 0 on 7 = 0 and ii --f A ,  Gj + 0 as 7 + cc. For the non-interactjve case 
we use, as our starting profile at 2 = 1, the numerical solution of (4.20) with A = 0 on 
the right-hand side of (4.20~). In the interactive situation z i s  normalized to unity and 
the system is solved with 2 = 1 in (4.20~). The velocity profiles for the two cases are 
shown in figures 2 and 3. 

4.2,3. Numerical results 
Plots of velocity components arising from the numerical solution of (4.12) are shown 

in figures 4 and 5 for the non-interactive and interactive cases, respectively. All the 
results are for an initial disturbance size e = 0.01. In the former case (figure 4) the 
solution appears to retain the self-similar form (4.19), activity thereby being confined 
mainly to the first mode. Since higher modes are negligible, plots of these quantities are 
not presented here. The results shown are for computations performed using 
Ax = 0.01, Ay = 0.05, N = 4 with the value of pm taken to be 50. The large value of this 
final parameter here and in the interactive case is necessary because the decay as y+ 00 

of the azimuthal component of the starting solution is only algebraic in nature (see 
figures 2(c), 3 (c)). The non-interactive numerical results appear to be relatively 
insensitive to further refinement in K and y. Turning now to the interactive case, higher 
modes are excited within only a few 2-steps of the starting location. Figure 5 shows 
how the interaction develops between K = 1 and K = 1.14, for the parameter values 
dx = 0.01, dy = 0.05, fm = 50 and truncation number N = 8. Beyond this position in 
2 more Fourier modes are required to describe the solution accurately and this is 
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FIGURE 3. (a) The streamwise velocity component G(y), (b) the normal velocity component 5 ( ~ ) ,  (c) the 
azimuthal velocity component O(q), calculated from the numerical solution of the interactive version 
of (4.20). 

currently beyond the computing resources at our disposal. The lack of resolution can 
be seen clearly in figure 5(e)  where the energies 

(4.21) 

for n = 1, 2, 3 are displayed, with mode 2 becoming dominant as 1 increases. The 
computations suggest that the interaction affects the flow significantly over a relatively 
short streamwise lengthscale. In addition the major activity appears to be concentrated 
close to the pipe wall which suggests that in future computations mesh points should 
be concentrated in this region rather than being spread uniformly as is currently the 
case. 

5. Starting solutions for the wide vortex-TS interaction 
In this section we postulate how the wide vortex-TS interaction formulated in 992 

and 3 develops spatially from an initially two-dimensional boundary layer upon the 
introduction of a three-dimensional neutral TS wave. The behaviour in the three 
regions I, IIa and IIb is discussed in turn. The analysis concentrates entirely on the case 
of spatial evolution of the vortex flow, i.e. we take i3/aTr 0 in (2.16) and (3.7). In 
addition to being of interest in its own right, this study also provides suitable starting 
conditions for a full numerical solution of the interaction equations. 

We assume that the wave has a starting amplitude proportional to 

Q cos be. (5.1) 
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FIGURE 4. (a) The real part of Ul(.?, Y ) ,  (b )  imaginary part of W,(Z, F), calculated from the 
numerical solution of the non-interactive version of (4.12). 

In region I, the spanwise wavenumber p is a real parameter, while for a wave input in 
regions IIa and IIb we require p = N, an integer, in view of the O(1) azimuthal scaling 
in these regions. The main result from this analysis will be the determination of the 
modulus of the complex quantity Q as a function of p or N .  We take the undisturbed 
boundary layer to be of the Blasius form since this is an exact solution of (2.16) with 
U, = 1 (or of (3.7)). Thus at the streamwise location x = xo we suppose: 

with 7 = Y/x; / ’ .  Initially, the main effects of the wave on the mean flow are confined 
near to the wall in a sublayer of thickness O ( X - ~ ~ ) ~ ’ ~  relative to the boundary layer. 

uO =&(T>, vO = $x,”2(Tf’B-fB>, wO = O, (5.2) 
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FIGURE 5 (a, b). For caption see facing page. 

In this region the flow expands in the form 

+++2pu,(~)cOs2pB +... , ( 5 . 3 4  -1 k 1 it h 64 u, = (x-x,)l~3-p+(x-x0)4/3 --__ 
0 ( 2 x y  x, 

(5.3b) 

(5.3 c) 
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where F = (%-x~)' /~( .  Here, the terms independent of e arise from the Taylor 
$xpansion of the near;wall form for the Blasius solution about the point ,Y = x,, with 
h N 0.33205, h4 = -h2/48. The powers of (X-xJ in (5.3) are determined by the 
following two requirements: (i) the terms (ul, Z I ~ ,  wl) representing the effects of the wave 
on the mean flow should be of the same magnitude as the non-parallel corrections to 
the Blasius flow; (ii) the thickness of the region should be such that the behaviour of 
the wave terms is governed by viscous effects at leading order. The dependence in (5.3) 
on the second harmonic is forced by the form (5.1) for the TS wave via the azimuthal 
forcing, i.e. equations (3.74 and (3.7f); we will return to this point later. Substitution 
of (5.3) into either (2.16a-c) or (3.7~-c) leaves (u,, v,, w,) controlled by 

$.41-gu;+ZI',+w, 4 = 0, (5.4a) 

(5.4b) 

The relevant outer boundary conditions are : 

wl+O, u;+O as t-foo, (5.4d) 

ensuring that the main three-dimensional effects are confined to the sublayer. The 
lower conditions are : 

u1 = ZI, = 0, w = -$ on ( = O ,  (5.4e) 

where the wave-induced azimuthal slip velocity 4 will be calculated presently from 
(3.7f). Before attempting to solve (5.4) it is convenient to rescale the variables to 
remove the constants i and 4. Thus we write 

u1 = - $ Z q [ ) ,  v, = -$a,(& w1 = -@,([), [ = (i/#2)1/3 6. (5.5) 

Under this rescaling, (5.4) become 

$22, -a&; + 0; + Rl = 0, 

$&, -g"; + 9, = c;, 

(5.6a) 

(5.6b) 

$$l-$&; = $;. (5 .6~)  

q o )  = S1(O) = 0, @,(O) = 1, a;(oo) = Rl(oo) = 0. (5.6d-f) 

Plots of the behaviour of zi,, fil and R, from the numerical solution of (5.6) are shown 
in figures 6(at6(c). For the present calculation concerning the determination of the 
wave amplitude Q, the quantity of interest from this solution is 

Recall that the azimuthal slip velocity and the wave pressure are linked via the relation 
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FIGURE 6. (a) the streamwise velocity component lilt[), (b)  the normal velocity component fi,(h, (c) 

the azimuthal velocity component vC1(Q, calculated from the numerical solution of (5.6). 

from (3 .7d , f ) .  From (5.3) and (5 .5) ,  the skin-friction h present in (5.8) is of the form 

-2/3 = ;,ji+(x-x,)( ;i -%-2p4($) 1 a;(o)coszpq+ ...I. (5.9) 

0 

Thus, upon assuming an initial development for the wave of the form 

pll = ( X - X ~ ) ~ ~ ~ ( Q C O S P B + ( X - X ~ ) P , ( ~ ) +  ...), (5.10) 

with wavenumber 
a = ao( 1 + (x- x,) al + . . .)> (5.11) 

we deduce from (5.3c), (5.4e), (5.8) and (5.9) that the slip velocity is given in terms of 
the wave amplitude by 

(5.12) 
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Using (5.12), the skin-friction distribution of (5.9) can be written in the form 

A = -  l + ( x - x o )  --+hl,cos2p0 +... , 
XO [ ( 2:, -1 1 (5.13) 

where 

To determine the quantity lQI2, we substitute the expansions (5.10), (5.11) and (5.13) 
into the pressure equation (3.7g) and compare like powers of (X-x,) .  To achieve 
consistency with (5.10), we expand the wave displacement A, ,  in the form 

A,, = (X-xo)1~~(A,COS/3i7+(x-xo)A1+ ...), (5.14) 
with the behaviour of A,, A ,  governed by (2.18) in region I and by (3.7h) in regions IIa 
and IIb. At O(1) in (3.7g), we obtain the linear eigenrelation for the TS waves, relating 
the streamwise wavenumber a, to the azimuthal wavenumber ,8 (or N )  and the distance 
downstream x,. In region I, where the flow is effectively an external one, this has the 
form 

ail3( Pz + = ( / i / ~ ; / ’ ) ~ / ~  d, (dl N 1 .OOO 65), (5.15) 
whilst in region I1 a we have 

(5.16) 

Finally, further downstream in region I1 b, the eigenrelation reduces to 
N = a;1 /3 ( i /~ i / z )5 /3d  1‘ (5.17) 

As expected, these relations match to each other in the appropriate limits. For example, 
starting with (5.16), equation (5.15) is obtained in the upstream limit a,, N - t  00, while 
(5.17) is obtained in the downstream limit a,+O. At ~ ( X - X , )  in the wave pressure 
equation (3.7g), comparing coefficients of cos 

w,al+w2)Q12+w3 = 0, (5.18) 
relating the amplitude Q to the wavenumber correction al, where w,, w2 and w3 are 
complex constants. The solution for lQlz is then 

we deduce the equation 

(5.19) 

Although the form of (5.19) is the same in all three regions the coefficients are different 
in view of the difference in the eigenrelations (5.15E(5.17). In view of the fact that in 
regions I and IIb, the input location L has been scaled out of the problem via 
(3.3t(3.6) and (3.1 lF(3.16), respectively, we can take x, = 1 without loss of generality. 
In the adjustment region IIa however, x, is allowed to vary (in effect, L = x, in this 
region). We expect to match IIa with the upstream region I as x,+O and with the 
downstream region I1 b as x ,  --f 00. In region I the coefficients w l ,  w2 and w3 have the 
form : 

w1 = - 3 4  - 2/92 - Q 3 (  pz + a31/2(i/x;/2)5’3i, (5.20 a) 

(5.20b) 

(5.20~) 
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FIGURE 7. Region I :  lQl versus azimuthal wavenumber p. 

in region I1 a : 

(5.21 a )  

(5.21 b) 

(5.21 c) 

and in region 116: 

(5.22b) 

(5.22 c) 

In (5.20)-(5.22) the complex constants rj and 6 are given approximately by 

i N -0.5854-0.8122i, & N 0.1884+ 1.74801. (5.23) 

Although we have referred to lQl as an amplitude above, we see from (5.10) that the 
wave starts from zero amplitude with lQ/ representing a measure of how rapidly the 
wave develops. For large values of IQl the interaction can only be described by linear 
theory for short distances from the location of wave input. In a controlled experiment 
it may be possible to realize these starting conditions by placing a vibrating ribbon in 
the neighbourhood of the lower branch neutral point. 

We now discuss the solutions given by (5.19) in each of the regions in turn. We begin 
with figure 7 where we have plotted IQI versus azimuthal wavenumber /3. The plot is 
obtained from the solution of (5.15), (5.19) and (5.20) with xn = 1 and is similar to 
that obtained by Walton, Bowles & Smith (1994) for a VWI near separation. There are 
a range of azimuthal wavenumbers for which no VWI solutions are possible. This 
is due to the fact that the denominator of (5.19) is negative in this range while the 
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FIGURE 8. Region IIa: (a) lQl versus distance x,, for azimuthal wavenumber N = 1 ; (b) IQI versus 
x,, for N = 1, 2 ,  3 ,  4 (from right to left). 

numerator remains positive. It can be shown that the two associated singular locations 
Pel, Pc2 occur when 

Substituting into (5.15) we deduce 

pel = 0.630a0, p,, = a,. 

Pc1 N 0.140, Pc2 z 0.195. 

It is clear that lQl is also singular at /3 = 0. The scaling (3.3) indicates that the effective 
azimuthal wavenumber decreases like L-5/8 as L + O( 1). Thus, starting the interaction 
further downstream corresponds to moving to the left on figure 7. At the downstream 
end of region I, therefore, the appropriate value of lQl is large, since lQl cc 1//3 as /3+ 0. 
We conclude that in this region the interaction develops rapidly. It seems plausible that 
an interaction initiated with p < /3,, will evolve downstream into region I1 in the 
manner predicted by the scalings of 93. If the interaction is started on the right-hand 
branch of figure 7, however, it is impossible on the basis of this linear theory for /3 to 
reach zero. This suggests that such interactions will terminate in a finite-distance 
singularity within region I. This possibility is consistent with the results of Walton, 
Bowles 8z Smith (1994) who found that such singularities arose when integrating 
numerically a simplified version of the wide vortex, starting from a similar location in 
their version of figure 7. 

As the input location is moved further downstream, the required azimuthal scaling 
for the TS wave eventually increases to O(1) and region IIa is entered. In figure 8 we 
present the solution for lQl, calculated from (5.16), (5.19) and (5.21). Figure 8(a) shows 
the variation of lQl with input location x, for azimuthal wavenumber N = 1. We see 
that there are no solutions possible in a small region near the beginning of IIa: for 
larger wavenumbers this region disappears. It is evident that lQl falls rapidly with 
distance. In other words, the interaction develops more slowly the further downstream 
the input location. This is not unreasonable since the basic flow is developing internal 
properties and becoming more stable. In figure 8 (b) we show lQl versus x, on a different 
scale for N = 1, 2, 3, 4. For all values of N it can be shown that IQl K x;li2 as x,,+ 0. 
In this limit, with N large, matching is achieved with the small-/3 solutions of region I. 
In the downstream limit x, + 00, a match is achieved to region IIb. Table 1 presents the 
values of IQl for N = 1,2,3,4,5 for the solution in IIb, calculated from (5.17), (5.19) 
and (5.22) with x, = 1. The values of lQl are extremely small and decrease rapidly with 
increasing N .  The solutions also decrease with increasing L, in view of the pressure 
scaling (3.13 d). Nevertheless, an interaction can still be initiated in this region; whether 
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N lQl 
1 0.0005451 
2 0.0000170 
3 0.0000022 
4 0.0000005 
5 0.0000002 

T ~ L E  1. Region IIb: lQl us. N for IV = 1, 2, 3, 4, 5 .  

such an interaction will persist can only be determined by a full numerical solution of 
the governing equations (3.7). 

In summary, the wide vortex VWI can evolve from an initially two-dimensional 
Blasius boundary layer in each of the three regions I, IIa and IIb. The interaction 
develops more rapidly in region I with TS waves possessing a short spanwise scaling 
appearing particularly dangerous. In regions IIa and 116, by contrast, it is the N = 1 
mode which develops most rapidly. In general, the VWI develops more slowly as the 
input location is moved downstream. 

The starting form proposed here becomes invalid very close to the position of wave 
input. The lengthscale associated with this inner region can be determined by balancing 
the order of magnitude of the correction to the wavelength of the TS wave, 
L 5 ~ s ( ~ - x , , ) - 1  from ( 3 . 3 )  and (5.11), with the lengthscale over which the mean flow is 
developing (c3 L(X- x,)). This gives a shortened lengthscale R-3'1nL-3/16i with i of 
0(1), over which it can be shown that the pressure amplitude satisfies a nonlinear 
integro-differential equation of the form 

(5.24) 

where -a denotes a wave input location slightly upstream of the neutral point. On this 
lengthscale the VWI is of the weakly nonlinear form studied by Hall & Smith (1989), 
Blackaby (1994), among others. In the case of interest here the constants K,, K, are 
positive with K J K ,  = Q2. Numerical calculations performed by Blackaby (1994) for 
relatively arbitrary wave input at i = --a show that the solution grows algebraically 
with p l l  - i1'6 Q as 2 --f co, which provides an exact match to the similarity solution 
presented above. Thus, it would appear that a weak interaction occurs close to the 
neutral point, naturally promoting the amplitude of the wave to the required size for 
the strong interaction to take over on the longer lengthscale. Incidentally, the range of 
azimuthal wavenumbers for which no strong interaction is possible corresponds to the 
case of K, < 0 and the occurrence of a finite-distance singularity in the numerical 
solution of (5.24). A similar analysis may be performed for the small vortex of $4 with 
the buffer layer acquiring the similarity solution studied in Walton & Smith (1992). 

6. Discussion 
In this paper we have presented the governing equations describing two types of 

strong vortex-TS interaction. In both cases, it is possible to obtain scalings with respect 
to downstream distance ,f that ensure that the form of the interaction equations 
remains relatively unchanged as ,f is increased. At a distance of 0(R3'5) there is an 
adjustment region (I1 a)  beyond which the flow develops internal characteristics. An 
interesting result is that the small vortex, which involves larger disturbances than the 
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wide vortex, develops in an analogous fashion until a distance of order R3/5/h2 < O(R), 
when the wave and induced mean flow lengthscales become comparable. Numerical 
solutions of the resulting three-dimensional triple-deck problem indicate that the flow 
acquires a complicated three-dimensional character as it develops downstream, with 
the major activity confined close to the pipe wall. The solutions presented here are 
time-independent: an obvious next step is to carry out an unsteady numerical 
calculation and try and compare the results with those arising from largescale 
numerical simulations. 

A significant result from the analysis of $ 5  is that in all regions of the pipe with 
i < O(R), the wide vortex-TS interaction can be initiated from a two-dimensional 
boundary layer, with a three-dimensional neutral TS wave being amplified initially via 
a weak interaction on a short lengthscale about the neutral point, followed by the 
stronger interaction on a longer lengthscale. This is in contrast to the vortex-Rayleigh 
wave interaction where it appears that such a natural amplification is the exception 
rather than the norm, (Brown et al. 1993). In view of this, efforts should be made in 
the future to obtain numerical solutions of the governing equations using starting 
conditions of the form investigated in $5. 

The author wishes to thank Professor F. T. Smith for suggesting the original 
problem and for many useful discussions concerning various aspects of the work, and 
to the referees for their comments on an earlier version of the paper. 
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